

Organización Internacional del Café
Organização Internacional do Café
Organisation Internationale du Café

Coffee Organization Café Café Café WP Board No. 979/05

18 August 2005 Original: English

Projects/Common Fund

Executive Board/ International Coffee Council 27 – 29 September 2005 Salvador, Brazil

Breeding coffee plants with durable resistance to Coffee Leaf Rust, anthracnose and other diseases

Project proposal

Background

- 1. This document has been submitted by the Coffee Board of India and contains a summary of a project proposal for research and development to enhance the genetic endowment of Arabica coffee in the context of disease resistance (Coffee Leaf Rust (CLR) and Anthracnose). The full project is available in English on request.
- 2. The proposal has been circulated to the Virtual Screening Committee for assessment and will be considered by the Executive Board in September 2005.

Action

The Executive Board is requested <u>to consider</u> this proposal and the comments of the Virtual Screening Committee and, if appropriate, <u>to recommend</u> approval by the Council.

Project Summary

Project title:

Breeding coffee plants with durable resistance to coffee leaf rust, anthracnose and other diseases.

Duration:

Five years.

In this phase the major part of the time is devoted to the development of materials in all participating countries. Given the long gestation period of a perennial crop like coffee, the proposed duration of five years is sufficient only for the proposed activities on a small scale (a second phase of two years is needed to assess the impact of new genetic materials on cultivation and production).

Location:

India

The ICO/CFC may identify other countries with which partnership modalities can be formulated.

Nature of the project:

Research and development to enhance the genetic endowments of Arabica coffee in the context of disease resistance (CLR and Anthracnose).

Brief description:

The period 1997-2004 witnessed unprecedented low prices for coffee in the international market, leading many small coffee growers all over the world to abandon coffee cultivation or skip plantation maintenance operations in India and, probably, other coffee growing countries. This had a cascading effect on the economies of all countries exporting coffee to earn foreign exchange down to the households producing coffee. In India, the impact of the price crisis led to the large-scale re-emergence of the devastating disease, leaf rust and the deadly pest, white stem borer. At the Central Coffee Research Institute, breeders developed many genotypes combining the genes of Arabica and Robusta coffee to obtain a high degree of resistance to leaf rust. Materials worthy of mention are: Devamachy hybrids (Spontaneous Robusta-Arabica hybrids) and Robarbica hybrids (Artificial Robusta-Arabica hybrids) commercially released as Selection-5 and Selection-6 respectively. These materials manifest high resistance to rust and can help tide small growers over the impact of the crisis. The present proposal had its origin in this background. In the course of the project work, it is proposed to ascertain the resistance of these selections to other diseases also with special emphasis on those caused by the anthracnose fungus Colletotrichum.

The estimated total cost: US\$400,940

Financing sought

from the Fund: US\$321,680

Mode of financing: Financing sought as grant.

Co-financing: By way of counterpart contribution.

Mode of co-financing:

Counterpart contribution: US\$79,260

Project Executing Agency: Coffee Board of India

Supervisory Body: International Coffee Organization

Estimated starting date: 01.01.2006

Logical Framework

Project Title: Breeding coffee plants with durable resistance to Coffee Leaf Rust, anthracnose and other diseases

boron common with country forms of the country too for a		TANGET CHARACTER OF THE PARTY	TACAMMATACON MINTERCAL
NAKKATIVE SUMMAKY	OBJECTIVELY VERIFIABLE INDICATORS	MEANS OF VERIFICATION	IMPORTANT ASSUMPTION
Programme goal: The broader objectives	Measures of goal achievement	a) Data on field incidence of disease.	Concerning long term value of project
a) To improve tolerance/resistance of cultivated Cottea arabica to	a) Increase in the trequency of disease tree plants in the	b) Survey data on disease management	a) Continued commitment to develop
the main diseases CLR (Coffee Leaf Rust) anthracnose and other	population.	cost.	environmentally benign and sustainable
diseases causing economically significant crop losses, without	b) Decrease in disease management cost by the integration	c) Socio-economic data collateral to field	disease control strategies for small grower
compromising quality attributes.		disease build-up.	practice.
b) To optimize disease control measures and render them	c) Beverage quality of new materials.	d) Certificates of residue analysis	b) Disease resistance built in to new
amenable for practice by small growers.	d) Socio-economic index to identify poor farmers who can	laboratories.	materials is expected to last for a long
c) To identify socio-economic factors that lead to large disease	be the beneficiaries of any assistance schemes.		time.
dn-plind			c) Integration of botanicals and optimized
			disease control is expected to help small
			growers in the long run.
Project purpose	Conditions that will indicate purpose has been achieved:	a) Survey to score field incidence of	Affecting purpose to goal link
a) Improve genetic endowments of cultivated C arabica for	End of project status	disease.	a) Leaf rust continues to be a strong
tolerance/resistance to CLR and anthracnose nathogens and to	a) Field incidence of disease by scoring in sizeable	b) Increased demand for seeds of new	constraint for coffee production in India.
reduce production costs through planting improved materials in	nomilations to prove increased resistance	materials	b) Maintenance of disease resistance in
narticipating countries	b) Grower accentance of new materials – indicated by	c) Certificates of heverage quality from	seed progenies by isolation of seed plots.
b) To protect the environment health through reduced use of	demand for new seed.	accredited Liquorers.	c) Improved disease control methods
fungicides.	c) Liquorers reports on the assessment of beverage quality.	•	withstand climatic vagaries.
c) To ensure beverage quality to match standard norms and render	d) Residue analysis reports.		1
it safe for consumption without residues.	e) Improved disease control by integration of botanicals-		
d) To identify socio-economic factors leading to non-adoption of	direct benefit to growers.		
recommended disease control measures.			
Outputs	Magnitude of outputs necessary and sufficient to achieve	a) Detailed analysis of disease resistance	Affecting output to purpose link
a) Development of seed plots in participating countries.	purpose	levels to understand the behaviour of	a) New control measures against leaf rust
b) Improved planting materials for cultivation from isolated seed	a) Increase in seed production based on demand in the	resistance genes in inheritance.	will be effective in consonance with the
plots.	respective countries (One kilogram coffee seed produces	b) Detailed analysis of cost and benefit of	built-in resistance and are amenable for
c) Development of Marker Assisted Selection protocol for seed	about 2,000 plantable seedlings).	cultivating new materials and appraisal by	small grower practice.
quality reliability.	b) Stabilizing the resistance by means of marker assisted	users at the terminal workshop.	b) A complete adoption by growers would
d) Optimizing disease control measures by integrating botanicals.	selection. Simpler modes of MAS are being developed in		be ensured if awareness and training in
e) Reduced cost of cultivation by minimizing use of fungicides.	India.		disease control operations continues post
f) Assured beverage quality and consumption safety.	c) Wide dissemination of the knowledge on botanical use in		project.
	disease control		
Inputs: Activities and types of resources	Level of effort/expenditure for each activity		
a) Survey and identification of coffee genotypes with possible	Component 1: To produce enough improved seed for	PEA Project Progress Report	a) Financing from all sources is to be made
resistance to CLR and anthracnose.	carrying out on-farm demonstration trials in ten	Annual Progress Reports	on a timely basis in tune with proposed
b) Testing these genetic stocks for resistance against CLR and	demonstration plots in India. US\$ 300,690	Participation in advisory committee	activities and annual work plan, budget
anthracnose, using the standard tests (leaf disc/attached leaf	Component 2: Optimization of currently available disease	meetings and terminal dissemination	etc.
inoculations for CLR and seedling hypocotyl inoculation for	control measures. US\$ 60,250.	workshop	b) The PEA and collaborative institutions
anthracnose) to assess level of resistance.	Component 3: Extension and dissemination of project	Farm trials of new materials in	co-ordinate and execute project efficiently.
c) Increasing the stock by controlled production of additional seed	results to farmers and other countries. US\$40,000	participation countries	c) All project participants remain
from resistant mother plants as well as cloning.	Component 4: Project Co-ordination (Execution,	Periodic reports and onsite visit to assess	committed to project purpose.
d) Integration of MAS in seed production.	Monitoring, Financial Administration etc.)	progress in implementation	d) Socio-political developments should not
e) Beverage quality assessment by cup tasters.			prevent effective project implementation.
t) Testing for pesticide residues.			
g) Initiation of on-tarm trials in small plots in participating			
countries.			